Bioinspired Multifunctional Glass Surfaces through Regenerative Secondary Mask Lithography

Adv Mater. 2021 Oct;33(43):e2102175. doi: 10.1002/adma.202102175. Epub 2021 Sep 13.

Abstract

Nature-inspired nanopatterning offers exciting multifunctionality spanning antireflectance and the ability to repel water/fog, oils, and bacteria; strongly dependent upon nanofeature size and morphology. However, such patterning in glass is notoriously difficult, paradoxically, due to the same outstanding chemical and thermal stability that make glass so attractive. Here, regenerative secondary mask lithography is introduced and exploited to enable customized glass nanopillars through dynamic nanoscale tunability of the side-wall profile and aspect ratio (>7). The method is simple and versatile, comprising just two steps. First, sub-wavelength scalable soft etch masks (55-350 nm) are generated through an example of block copolymer micelles or nanoimprinted photoresist. Second, their inherent durability problem is addressed by an innovative cyclic etching, when the original mask becomes embedded within a protective secondary organic mask, which is tuned and regenerated, permitting dynamic nanofeature profiling with etching selectivity >1:32. It is envisioned that such structuring in glass will facilitate fundamental studies and be useful for numerous practical applications-from displays to architectural windows. To showcase the potential, glass features are tailored to achieve excellent broadband omnidirectional antireflectivity, self-cleaning, and unique antibacterial activity toward Staphylococcus aureus.

Keywords: antimicrobials; antireflection; bioinspired multifunctionality; glass; nanopatterning; periodic nanoarrays; self-cleaning.

MeSH terms

  • Glass*