Thymoquinone Suppresses the Proliferation, Migration and Invasiveness through Regulating ROS, Autophagic Flux and miR-877-5p in Human Bladder Carcinoma Cells

Int J Biol Sci. 2021 Aug 12;17(13):3456-3475. doi: 10.7150/ijbs.60401. eCollection 2021.

Abstract

Bladder carcinoma is among the top 10 most frequently diagnosed cancer types in the world. As a phytochemical active metabolic, thymoquinone (TQ) is extracted from seeds of Nigella sativa, possessing various biological properties in a wide range of diseases. Moreover, the outstanding anti-cancer effect of TQ is attracting increasing attentions. In certain circumstances, moderate autophagy is regarded to facilitate the adaptation of malignant cells to different stressors. Conversely, closely linked with the mitochondrial membrane potential (MMP) loss, the upregulation of intracellular reactive oxygen species (ROS) is reported to activate the cell apoptosis in many cancer types. Furthermore, the vital effects of microRNAs in the pathological processes of cancer cells have also been confirmed by previous studies. The present research confirms that TQ restrains the viability, proliferation, migration and invasion through activating caspase-dependent apoptosis in bladder carcinoma cells, which is mediated by TQ induced ROS increase in bladder carcinoma cells. Furthermore, TQ is proved to block the fusion of autophagosomes and lysosomes, causing the accumulation of autophagosomes and subsequent cell apoptosis. In addition, TQ is also found to initiate the miR-877-5p/PD-L1 axis, which suppresses the epithelial mesenchymal transition (EMT) and invasion of bladder carcinoma cells. Taken together, TQ induces the apoptosis through upregulating ROS level and impairing autophagic flux, and inhibiting the EMT and cell invasion via activating the miR-877-5p/PD-L1 axis in bladder carcinoma cells.

Keywords: Autophagic flux; Bladder carcinoma; Epithelial mesenchymal transition; Reactive oxygen specifics; Thymoquinone; miR-877-5p/PD-L1 axis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Autophagy / drug effects
  • B7-H1 Antigen / metabolism*
  • Benzoquinones / pharmacology
  • Benzoquinones / therapeutic use*
  • Carcinoma / drug therapy*
  • Carcinoma / metabolism
  • Cell Line, Tumor
  • Drug Evaluation, Preclinical
  • Epithelial-Mesenchymal Transition / drug effects
  • Humans
  • Membrane Potential, Mitochondrial / drug effects
  • MicroRNAs / metabolism*
  • Reactive Oxygen Species / metabolism
  • Urinary Bladder Neoplasms / drug therapy*
  • Urinary Bladder Neoplasms / metabolism

Substances

  • B7-H1 Antigen
  • Benzoquinones
  • CD274 protein, human
  • MIRN877 microRNA, human
  • MicroRNAs
  • Reactive Oxygen Species
  • thymoquinone