A life cycle assessment of hard carbon anodes for sodium-ion batteries

Philos Trans A Math Phys Eng Sci. 2021 Nov;379(2209):20200340. doi: 10.1098/rsta.2020.0340. Epub 2021 Sep 13.

Abstract

Waste management is one of the biggest environmental challenges worldwide. Biomass-derived hard carbons, which can be applied to rechargeable batteries, can contribute to mitigating environmental changes by enabling the use of renewable energy. This study has carried out a comparative environmental assessment of sustainable hard carbons, produced from System A (hydrothermal carbonization (HTC) followed by pyrolysis) and System B (direct pyrolysis) with different carbon yields, as anodes in sodium-ion batteries (SIBs). We have also analysed different scenarios to save energy in our processes and compared the biomass-derived hard carbons with commercial graphite used in lithium-ion batteries. The life cycle assessment results show that the two systems display significant savings in terms of their global warming potential impact (A1: -30%; B1: -21%), followed by human toxicity potential, photochemical oxidants creation potential, acidification potential and eutrophication potential (both over -90%). Possessing the best electrochemical performance for SIBs among our prepared hard carbons, the HTC-based method is more stable in both environmental and electrochemical aspects than the direct pyrolysis method. Such results help a comprehensive understanding of sustainable hard carbons used in SIBs and show an environmental potential to the practical technologies. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)'.

Keywords: hard carbon; hydrothermal carbonization; life cycle analysis; pyrolysis; sodium-ion batteries; sustainability.