Regeneration of rat periodontium by cementum protein 1-derived peptide

J Periodontal Res. 2021 Dec;56(6):1223-1232. doi: 10.1111/jre.12921. Epub 2021 Sep 12.

Abstract

Background and objective: Cementum protein 1 (CEMP1) has the capacity to promote differentiation of periodontal ligament (PDL) cells toward a cementoblastic phenotype in vitro and bone regeneration in vivo. In this study, we tested the capabilities of a synthetic cementum protein 1-derived peptide, MGTSSTDSQQAGHRRCSTSN (CEMP1-p1), to promote regeneration of periodontal structures in a periodontal fenestration defect in rats.

Material and methods: Fenestration defects were created using an extra-oral approach in the buccal aspect of the mandibular first molar roots. Eighteen male Wistar rats were divided into three groups. Two controls (defects non-treated or defects treated with a gelatin matrix scaffold [GMS] only) and the experimental group treated with 5 µg/dose of CEMP1-p1 embedded in GMS. After 28 days, the animals were sacrificed, and the mandibles processed for histopathological examination. Expression of cementum proteins, cementum attachment protein (CAP), CEMP1, integrin binding sialoprotein (IBSP), and osteocalcin (OCN), was assessed using immunofluorescence. The formation of new cementum, bone, and PDL fibers were compared between control and experimental groups.

Results: The histological analysis revealed that the control group without any treatment new cementum or oriented PDL fibers were not observed. However, the presence of newly bone was detected. In the control group treated with GMS, new cementum formation was not detectable, the PDL fibers were oriented parallel to the longitudinal root axis, and new bone formation was observed. The experimental group showed deposit of acellular extrinsic fiber cementum (AEFC) in a lamellae-like feature with inserted Sharpey's fibers, formation of cellular mixed stratified cementum (CMSC) with the presence of cementocytes, and newly formed bone close to the cementum-enamel junction. Cementoblast cells adjacent to new cementum expressed CAP, CEMP1, IBSP, and OCN.

Conclusion: These studies show that CEMP1-p1 promotes the formation of AEFC, CMSC, new PDL with Sharpey's fibers inserted in cementum and bone, thus providing strong evidence that the synthetic peptide CEMP1-p1 promotes periodontal regeneration in a rat fenestration model.

Keywords: cementum; cementum protein 1; peptide CEMP1-p1; periodontal regeneration.

MeSH terms

  • Animals
  • Dental Cementum*
  • Male
  • Osteocalcin
  • Peptides
  • Periodontal Ligament*
  • Periodontium
  • Rats
  • Rats, Wistar

Substances

  • Peptides
  • Osteocalcin

Grants and funding