High Salt-Content Plasticized Flame-Retardant Polymer Electrolytes

ACS Appl Mater Interfaces. 2021 Sep 22;13(37):44844-44859. doi: 10.1021/acsami.1c11058. Epub 2021 Sep 10.

Abstract

New solid polymer electrolytes are of particular interest for next-generation high-energy batteries since they can overcome the limited voltage window of conventional polyether-based electrolytes. Herein, a flame-retardant phosphorus-containing polymer, poly(dimethyl(methacryloyloxy)methyl phosphonate) (PMAPC1) is introduced as a promising polymer matrix. Free-standing membranes are easily obtained by mixing PMAPC1 with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and a small amount of acetonitrile (AN). LiTFSI/AN mixed aggregates are formed that act as plasticizers and enable ionic conductivities up to 1.6 × 10-3 S cm-1 at 100 °C. The high content of LiTFSI used in our electrolytes leads to the formation of a stable LiF solid-electrolyte interphase, which can effectively suppress Li dendrites and the chemical degradation of AN in contact with Li. Accordingly the electrolyte membranes exhibit a wide electrochemical stability window above 4.7 V versus Li+/Li and fire-retardant properties due to the presence of the phosphorus-containing polymer. Atomistic molecular modeling simulations have been performed to determine the structure of the electrolytes on the microscopic scale and to rationalize the trends in ionic conductivity and the transport regime as a function of the electrolyte composition. Finally, our electrolyte membranes enable stable cycling performance for LiFePO4|PMAPC1 + LiTFSI + AN|Li batteries.

Keywords: LiTFSI; PMAPC1; lithium-ion batteries; polyethers; solid polymer electrolytes.