A second S4 movement opens hyperpolarization-activated HCN channels

Proc Natl Acad Sci U S A. 2021 Sep 14;118(37):e2102036118. doi: 10.1073/pnas.2102036118.

Abstract

Rhythmic activity in pacemaker cells, as in the sino-atrial node in the heart, depends on the activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. As in depolarization-activated K+ channels, the fourth transmembrane segment S4 functions as the voltage sensor in hyperpolarization-activated HCN channels. But how the inward movement of S4 in HCN channels at hyperpolarized voltages couples to channel opening is not understood. Using voltage clamp fluorometry, we found here that S4 in HCN channels moves in two steps in response to hyperpolarizations and that the second S4 step correlates with gate opening. We found a mutation in sea urchin HCN channels that separate the two S4 steps in voltage dependence. The E356A mutation in S4 shifts the main S4 movement to positive voltages, but channel opening remains at negative voltages. In addition, E356A reveals a second S4 movement at negative voltages that correlates with gate opening. Cysteine accessibility and molecular models suggest that the second S4 movement opens up an intracellular crevice between S4 and S5 that would allow radial movement of the intracellular ends of S5 and S6 to open HCN channels.

Keywords: S4 movement; S4-to-gate coupling; molecular models; spHCN; voltage clamp fluorometry.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biological Clocks / physiology
  • Cyclic Nucleotide-Gated Cation Channels / genetics
  • Cyclic Nucleotide-Gated Cation Channels / metabolism
  • Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels / genetics*
  • Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels / metabolism*
  • Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels / physiology
  • Ion Channel Gating / physiology
  • Membrane Potentials / physiology
  • Patch-Clamp Techniques / methods
  • Potassium Channels / metabolism
  • Sea Urchins / metabolism

Substances

  • Cyclic Nucleotide-Gated Cation Channels
  • Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels
  • Potassium Channels