Experimental Investigation of Wavy-Lap Bonds with Natural Cotton Fabric Reinforcement under Cyclic Loading

Polymers (Basel). 2021 Aug 26;13(17):2872. doi: 10.3390/polym13172872.

Abstract

This study is focused on the mechanical properties and service life (safety) evaluation of hybrid adhesive bonds with shaped overlapping geometry (wavy-lap) and 100% natural cotton fabric used as reinforcement under cyclic loading using various intensities. Cyclic loading were implemented between 5-50% (267-2674 N) and 5-70% (267-3743 N) from the maximum strength (5347 N) measured by static tensile test. The adhesive bonds were loaded by 1000 cycles. The test results demonstrated a positive influence of the used reinforcement on the mechanical properties, especially during the cyclic loading. The adhesive bonds Tera-Flat withstood the cyclic load intensity from 5-70% (267-3743 N). The shaped overlapping geometry (wavy-lap bond) did not have any positive influence on the mechanical performance, and only the composite adhesive bonds Erik-WH1 and Tera-WH1 withstood the complete 1000 cycles with cyclic loading values between 5-50% (267-2674 N). The SEM analysis results demonstrated a positive influence on the fabric surface by treatment with 10% NaOH aqueous solution. The unwanted compounds (lignin) were removed. Furthermore, a good wettability has been demonstrated by the bonded matrix material. The SEM analysis also demonstrated micro-cracks formation, with subsequent delamination of the matrix/reinforcement interface caused by cyclic loading. The experimental research was conducted for the analysis of hybrid adhesive bonds using curved/wavy overlapping during both static and cyclic loading.

Keywords: SEM; cyclic fatigue; mechanical properties; natural cotton fabric; polymer composite; quasi-static test; safety; service life; wavy-lap bond.