Green and Short Preparation of CeO2 Nanoparticles with Large Specific Surface Area by Spray Pyrolysis

Materials (Basel). 2021 Aug 31;14(17):4963. doi: 10.3390/ma14174963.

Abstract

Green and short preparation of CeO2 nanoparticles with large specific surface area from rare earth extraction (CeCl3) was successfully achieved by spray pyrolysis (SP). In this method, a precursor solution is first prepared by mixing CeCl3, C6H8O, and H2O in the requisite quantities. Subsequently, the precursor consisting of a mixture of CeO2 and C was obtained by SP method by using the precursor solution. Finally, the calcination at 500 °C~800 °C in air for two hours to transform the precursor to CeO2 nanoparticles. Thermodynamic analysis and experimental studies were performed to determine the optimal SP temperature and citric acid amount. The results indicated that the maximum specific surface area (59.72 m2/g) of CeO2 nanoparticles were obtained when the SP temperature was 650 °C and the molar ratio of citric acid to CeCl3 was 1.5.

Keywords: CeO2; citric acid; specific surface area; spray pyrolysis; spray pyrolysis temperature.