A Comparative Study for the Prediction of the Compressive Strength of Self-Compacting Concrete Modified with Fly Ash

Materials (Basel). 2021 Aug 30;14(17):4934. doi: 10.3390/ma14174934.

Abstract

Artificial intelligence and machine learning are employed in creating functions for the prediction of self-compacting concrete (SCC) strength based on input variables proportion as cement replacement. SCC incorporating waste material has been used in learning approaches. Artificial neural network (ANN) support vector machine (SVM) and gene expression programming (GEP) consisting of 300 datasets have been utilized in the model to foresee the mechanical property of SCC. Data used in modeling consist of several input parameters such as cement, water-binder ratio, coarse aggregate, fine aggregate, and fly ash (FA) in combination with the superplasticizer. The best predictive models were selected based on the coefficient of determination (R2) results and model validation. Empirical relation with mathematical expression has been proposed using ANN, SVM, and GEP. The efficiency of the models is assessed by permutation features importance, statistical analysis, and comparison between regression models. The results reveal that the proposed machine learning models achieved adamant accuracy and has elucidated performance in the prediction aspect.

Keywords: artificial neural network; fly ash; gene engineering programming; machine learning; self-compacting concrete.