Biodiversity and ecosystem services mapping: Can it reconcile urban and protected area planning?

Sci Total Environ. 2022 Jan 10:803:150048. doi: 10.1016/j.scitotenv.2021.150048. Epub 2021 Sep 1.

Abstract

Land-use changes, especially urbanization, have largely impacted the capacity of ecosystems to deliver ecosystem services (ES) on which human wellbeing depends. The current sectorial landscape and territorial planning approaches that separately address protected areas and urban areas have proven ineffective in conserving biodiversity. To address this important challenge, integrated territorial planning has been claimed to be able to better reconcile interests between nature conservation and urban planning, and ES supply and demand mapping may be a useful tool for such purposes. In this study, we quantitatively mapped biodiversity and the supply and demand of eight ES along an urban-rural gradient in the region of Madrid (Spain). Then, we clustered the municipalities in this gradient into four groups based on their common biodiversity and ES supply and demand characteristics. Additionally, we reviewed the urban plans from these municipalities and the management plans of three protected areas, analysed the references to ES in the plans, and searched for potential conflicts between urban and protected area planning aims. We found that municipalities with highly coupled ES supply and demand are in high altitude areas, coinciding with protected areas, while in urban areas, the ES demand exceeds the supply. Municipalities exhibiting a high demand for regulating ES usually include them in their plans, while municipalities with a high supply of regulating ES do not. Given the several conflicts between protected areas and urban planning that we detected, we discuss the utility of mapping biodiversity and ES supply and demand beyond administrative boundaries to overcome the challenge of integrating spatial planning approaches, especially in the context of urban-rural gradients and megacities. We also explore the utility of these methods for coordinating urban planning tools to achieve integrated territorial planning.

Keywords: Landscape planning; Social-ecological systems; Spatial planning; Territorial planning; Urban-rural gradients.

MeSH terms

  • Biodiversity
  • Cities
  • Conservation of Natural Resources*
  • Ecosystem*
  • Humans
  • Urbanization