Transcriptional responses to Fusarium oxysporum f. sp. lycopersici (Sacc.) Snyder & Hansen infection in three Colombian tomato cultivars

BMC Plant Biol. 2021 Sep 8;21(1):412. doi: 10.1186/s12870-021-03187-z.

Abstract

Background: Fusarium oxysporum f. sp. lycopersici (Fol) is a compendium of pathogenic and non-pathogenic fungal strains. Pathogenic strains may cause vascular wilt disease and produce considerable losses in commercial tomato plots. To gain insight into the molecular mechanisms mediating resistance to Fol in tomato, the aim of our study was to characterize the transcriptional response of three cultivars (CT1, CT2 and IAC391) to a pathogenic (Fol-pt) and a non-pathogenic (Fo-npt) strain of Fo.

Results: All cultivars exhibited differentially expressed genes in response to each strain of the fungus at 36 h post-inoculation. For the pathogenic strain, CT1 deployed an apparent active defense response that included upregulation of WRKY transcription factors, an extracellular chitinase, and terpenoid-related genes, among others. In IAC391, differentially expressed genes included upregulated but mostly downregulated genes. Upregulated genes mapped to ethylene regulation, pathogenesis regulation and transcription regulation, while downregulated genes potentially impacted defense responses, lipid transport and metal ion binding. Finally, CT2 exhibited mostly downregulated genes upon Fol-pt infection. This included genes involved in transcription regulation, defense responses, and metal ion binding.

Conclusions: Results suggest that CT1 mounts a defense response against Fol-pt. IAC391 exhibits an intermediate phenotype whereby some defense response genes are activated, and others are suppressed. Finally, the transcriptional profile in the CT2 hints towards lower levels of resistance. Fo-npt also induced transcriptional changes in all cultivars, but to a lesser extent. Results of this study will support genetic breeding programs currently underway in the zone.

Keywords: Fusarium oxysporum; RNAseq; Resistance; Selection of cultivars; Tomato.

MeSH terms

  • Chromosomes, Plant
  • Colombia
  • Disease Resistance / genetics
  • Ethylenes / metabolism
  • Fusarium / pathogenicity*
  • Gene Expression Regulation, Plant
  • Host-Pathogen Interactions / genetics*
  • Plant Diseases / genetics
  • Plant Diseases / microbiology
  • Plant Proteins / genetics*
  • Solanum lycopersicum / genetics*
  • Solanum lycopersicum / microbiology*
  • Transcription Factors / genetics

Substances

  • Ethylenes
  • Plant Proteins
  • Transcription Factors
  • ethylene

Supplementary concepts

  • Fusarium oxysporum