Stable Nonwetting Artificial Compound Eye with Low Adhesion

ACS Appl Mater Interfaces. 2021 Sep 22;13(37):45040-45049. doi: 10.1021/acsami.1c11632. Epub 2021 Sep 8.

Abstract

Microlens arrays (MLAs) are the key components of miniaturized optical systems. To meet the stringent requirements for their application in humid environments, achieving waterproof properties in these objects is an urgent task. It is noteworthy that conventional methods of microlens production usually sacrifice optical performance for stable superhydrophobicity by increasing the surface roughness of the microlens. In this paper, a large area artificial compound eye (ACE) is efficiently fabricated by combining photolithography and inkjet printing. The added micropillars separated the outside droplet from the microlens, and the water droplet was afterward suspended on the top of micropillars. Furthermore, the micropillars enabled superhydrophobicity (at a contact angle above 150°) and low surface adhesion (at a sliding angle of ∼2.8°) of the microlens without affecting its optical performance. Furthermore, when released from the height of 1 and 2 cm, the droplets were fully detached from the surface without sticking. The surface of the ACE was shown to have relatively stable nonwettability due to a small spacing between the micropillars. This means that tuning the morphology and spacing between micropillars allows one to noticeably improve the surface nonwettability stability. Finally, the performance of the fabricated optical system was demonstrated in a water washing experiment. Therefore, the findings of present study may open up the prospects for significant advancement in superhydrophobicity of the optical systems without affecting their imaging performance for real outdoor applications.

Keywords: artificial compound eye; low adhesion; microlens array; micropillars; superhydrophobicity.