Engineering oxygen vacancies via amorphization in conjunction with W-doping as an approach to boosting catalytic properties of Pt/Fe-W-O for formaldehyde oxidation

J Hazard Mater. 2021 Aug 15:416:126224. doi: 10.1016/j.jhazmat.2021.126224. Epub 2021 May 26.

Abstract

Engineering functional defects in support materials has gained ever-increasing attention as a novel approach to boosting the catalytic performance of oxide-supported catalysts. Herein, we demonstrate the feasibility of engineering oxygen vacancy in iron oxide through amorphization in conjunction with foreign cation doping and elucidate the important role of support functionality in the catalytic oxidation of formaldehyde (HCHO). A supported Pt catalyst on Fe-W-O amorphous nanosheets (denoted as Pt/a-Fe-W-O) was synthesized using a one-step solvothermal method. This simple method allowed us to simultaneously create abundant oxygen vacancies in the substrate and to ensure uniform dispersion of tiny Pt nanoparticles with an average diameter of 1.4 nm on the high-surface-area substrate. This renders an increased possibility of Pt/O-vacancy coexistence in close proximity, which synergistically boosts the formation of active oxygen and surface hydroxyl species. Consequently, the Pt/a-Fe-W-O catalyst with an optimal W/Fe molar ratio of 0.08:1 and a 1.51 wt% Pt loading exhibited a high specific reaction rate of 68.3 μmol gPt-1 s-1 and excellent stability during 24 h continuous test, outperforming most existing HCHO oxidation catalysts. Our study highlights the importance of functional oxygen defects in construction of synergistic active sites for promoting the reactions requiring multiple active species.

Keywords: Amorphization; Formaldehyde oxidation; Oxygen defect engineering; Pt-based catalyst; W doping.