Morphology optimization strategy of flower-like CoNi2S4/Co9S8@MoS2 core@shell nanocomposites to achieve extraordinary microwave absorption performances

J Colloid Interface Sci. 2022 Jan 15;606(Pt 2):1128-1139. doi: 10.1016/j.jcis.2021.08.085. Epub 2021 Aug 16.

Abstract

Morphology optimization is an effective strategy to take full advantage of interface polarization for the improvement of electromagnetic wave attenuation capability. Herein, a general route was proposed to produce the flower-like core@shell structured MoS2-based nanocomposites through a simple hydrothermal process. Through the in-situ hydrothermal reaction between the Mo and S sources on the surface of CoNi nanoparticles, flower-like core@shell structured CoNi2S4/Co9S8@MoS2 nanocomposites could be successfully synthesized. By regulating the hydrothermal temperature, the flower-like geometrical morphology of samples could be effectively optimized, and the as-prepared sample (S2) synthesized at 200 °C displayed very excellent flower-like morphology compared to the samples (S1 and S3) obtained at 180 and 220 °C. Owing to the excellent interface polarization effect, the as-prepared S2 presented the evidently superior comprehensive microwave absorption properties in terms of strong aborption capability, wide absorption bandwidth and thin matching thicknesses compared to those of S1 and S3. The as-prepared core@shell structured CoNi2S4/Co9S8@MoS2 sample with very excellent flower-like morphology simultaneously displayed the minimal reflection loss of -50.61 dB with the matching thickness of 2.98 mm, and the effective absorption bandwidth of 8.40 GHz with the matching thickness of 2.36 mm. Therefore, we provided a general route for the production of flower-like core@shell structured MoS2-based nanocomposites, which could make the best of interface polarization to develop high-efficiency microwave absorbers.

Keywords: Core@shell structured CoNi(2)S(4)/Co(9)S(8)@MoS(2) nanocomposites; Extraordinary comprehensive microwave absorption properties; Flower-like geometrical morphology; Interface polarization.