Soil moisture and species richness interactively affect multiple ecosystem functions in a microcosm experiment of simulated shrub encroached grasslands

Sci Total Environ. 2022 Jan 10:803:149950. doi: 10.1016/j.scitotenv.2021.149950. Epub 2021 Aug 27.

Abstract

Understanding relationships between biodiversity and ecosystem functions (BEF) and the way in which ecosystem functions respond to changing climatic conditions or community composition is useful for predicting ecological consequences of global changes. However, how soil moisture condition, plant species richness interactively affect ecosystem functions in shrub-encroached grasslands is poorly understood. We conducted a soil moisture × species richness microcosm experiment using semi-arid grassland species with a N-fixing shrub Caragana microphylla Lam. as the dominant species to evaluate how soil moisture and plant species richness affected ecosystem functions directly or indirectly via regulating community functional structure, such as community-weighted mean values (CWM) and functional dispersion (FDis). Soil moisture and species richness interactively affected soil functions (soil C-, N-, P cycles and soil multifunctionality), with greater species richness buffering the adverse effects of soil drought. Soil moisture and species richness showed opposite effects on FDis but similar effects on CWM. FDis mediated the indirect effect of soil moisture and species richness on ecosystem functions, while CWM only mediated the indirect effect of soil moisture. More specifically, both soil moisture and plant species richness were negatively associated with soil P cycle, and the CWMPC1 contributed by traits related to resource-conservative strategy was positively associated with soil N cycle. Species richness showed a positive direct effect on total shoot biomass, which was mainly contributed by the complementarity effect of neighbor species richness. This study provides strong empirical support of how biomass and soil nutrient cycles respond to the changes of soil moisture and plant species richness in C. microphylla shrub-encroached grasslands, and insights on the mechanisms underlying the interactive effects of soil condition and community species composition on multiple ecosystem functions in N-fixing shrub encroached grasslands in semi-arid grassland regions.

Keywords: Drought; Ecosystem functions; Multifunctionality; N-fixing shrub; Plant functional traits; Shrub-encroached grasslands; Species richness.

MeSH terms

  • Biodiversity
  • Biomass
  • Desert Climate
  • Ecosystem*
  • Grassland
  • Soil*

Substances

  • Soil