ATP2B1 genotypes rs2070759 and rs2681472 polymorphisms and risk of hypertension in Saudi population

Nucleosides Nucleotides Nucleic Acids. 2021;40(11):1075-1089. doi: 10.1080/15257770.2021.1973034. Epub 2021 Sep 6.

Abstract

This study examined an association of ATP2B1 gene polymorphism and hypertension in the Saudi population. The 246 hypertensive cases and 300 healthy human controls were genotyped. The results showed that genotypes rs.207075 (CA + AA) [p = 0.05; OR: 95% CI, 1.5:(1.0 to 2.4) and p = 0.001, OR: 95% CI, 2.4: (1.5 to 4.0) and rs2681472 (CT + TT) [p = 0.05; OR: 95% CI, 1.5 (1.0 to 2.4) and p = 0.006 OR: 95% CI, 2.0 (1.2 to 3.1) respectively] associated with the risk of hypertension. Cases carrying the recessive models: [(CA + AA)/(CT + TT)] and [(AA)/(TT)] genotypes confer a strong susceptibility risk of hypertension [p = 0.002; OR: (95%CI) 1.8 (1.2 to 2.6) and p = 0.001; OR: (95%CI) 2.6 (1.5 to 4.7) respectively]. However, cases with body-mass-index (BMI)<25, carrying homozygous mutant genotypes [AA, rs2070759, p = 0.007; OR: (95%CI) 2.75(1.37 to 5.5) and (TT, rs2681472, p = 0.05; OR: (95%CI) 1.96 (1.03 to 3.72)] as well as A allele of rs2070759 [p = 0.006; OR: (95%CI) 1.62 (1.16 to 2.25)] and T allele of rs2681472, p = 0.04, 1.43(1.03 to 1.98)] showed a significant association with high risk of hypertension. In short, a significant association between ATP2B1 gene polymorphism and risk of hypertension was noticed. In addition, individuals carrying recessive genotypes have greater risk in developing hypertension than those carrying dominant genotypes. Moreover, cases with high-risk BMI associated with ATP2B1 variants may play a critical role in developing hypertension.Supplemental data for this article is available online at https://doi.org/10.1080/15257770.2021.1973034 .

Keywords: ATP2B1; BMI; Saudi population; gene polymorphism; hypertension.

MeSH terms

  • Alleles*
  • Genetic Predisposition to Disease*
  • Genotype*
  • Humans
  • Hypertension / epidemiology*
  • Hypertension / genetics*
  • Plasma Membrane Calcium-Transporting ATPases / genetics*
  • Polymorphism, Single Nucleotide*
  • Population Surveillance
  • Saudi Arabia / epidemiology

Substances

  • ATP2B1 protein, human
  • Plasma Membrane Calcium-Transporting ATPases