Anodic Stripping Voltammetry on a Carbon-based Ion-Selective Electrode

Electrochim Acta. 2021 Sep 10:390:138855. doi: 10.1016/j.electacta.2021.138855. Epub 2021 Jul 2.

Abstract

In this study, we demonstrated the unique capability of carbon-based ion-selective electrode (ISE) to perform highly sensitive square wave anodic stripping voltammetry, while maintaining all the properties of an ISE, in terms of sensitivity, detection limit, response time and selectivity. Square wave anodic stripping voltammetry involves deposition and dissolution steps of metal ions, which means adsorption and desorption of metal ions on the conductive ion-selective membrane without losing its ion-sensing property. To demonstrate this capability, we chose a Ca2+ ion-selective microelectrode (μISE) as a potentiometric method and Cu2+-stripping voltammetry as an amperometric method. The carbon-based ISE surface is capable of quantifying nanomolar to micromolar Cu2+ in both a standard acetate buffer and a complex water sample. The Ca2+-μISE also showed a Nernstian slope of 29 mV / log [Ca2+] and a detection limit of 1 μM within the linear range of 1 μM to 10 mM. It thus opens an opportunity to use the low detection limit of anodic stripping voltammetry and the high selectivity of ISE-based potentiometry.