An Efficient Iterative Approach to Explainable Feature Learning

IEEE Trans Neural Netw Learn Syst. 2023 May;34(5):2606-2618. doi: 10.1109/TNNLS.2021.3107049. Epub 2023 May 2.

Abstract

This article introduces a new iterative approach to explainable feature learning. During each iteration, new features are generated, first by applying arithmetic operations on the input set of features. These are then evaluated in terms of probability distribution agreements between values of samples belonging to different classes. Finally, a graph-based approach for feature selection is proposed, which allows for selecting high-quality and uncorrelated features to be used in feature generation during the next iteration. As shown by the results, the proposed method improved the accuracy of all tested classifiers, where the best accuracies were achieved using random forest. In addition, the method turned out to be insensitive to both of the input parameters, while superior performances in comparison to the state of the art were demonstrated on nine out of 15 test sets and achieving comparable results in the others. Finally, we demonstrate the explainability of the learned feature representation for knowledge discovery.