Galvanic Deposition of Pt Nanoparticles on Black TiO2 Nanotubes for Hydrogen Evolving Cathodes

ChemSusChem. 2021 Nov 19;14(22):4993-5003. doi: 10.1002/cssc.202101559. Epub 2021 Oct 6.

Abstract

A galvanic deposition method for the in-situ formation of Pt nanoparticles (NPs) on top and inner surfaces of high-aspect-ratio black TiO2 -nanotube electrodes (bTNTs) for true utilization of their total surface area has been developed. Density functional theory calculations indicated that the deposition of Pt NPs was favored on bTNTs with a preferred [004] orientation and a deposition mechanism occurring via oxygen vacancies, where electrons were localized. High-resolution transmission electron microscopy images revealed a graded deposition of Pt NPs with an average diameter of around 2.5 nm along the complete nanotube axis (length/pore diameter of 130 : 1). Hydrogen evolution reaction (HER) studies in acidic electrolytes showed comparable results to bulk Pt (per geometric area) and Pt/C commercial catalysts (per mg of Pt). The presented novel HER cathodes of minimal engineering and low noble metal loadings (μg cm-2 range) achieved low Tafel slopes (30-34 mV dec-1 ) and high stability in acidic conditions. This study provides important insights for the in-situ formation and deposition of NPs in high-aspect-ratio structures for energy applications.

Keywords: Pt electrocatalyst; TiO2 nanotubes; electrocatalysis; electrode materials; hydrogen evolution.