Brain neurometabolites differences in individuals with subjective cognitive decline plus: a quantitative single- and multi-voxel proton magnetic resonance spectroscopy study

Quant Imaging Med Surg. 2021 Sep;11(9):4074-4096. doi: 10.21037/qims-20-1254.

Abstract

Background: Subjective cognitive decline plus could be an extremely early phase of Alzheimer's disease; however, changes of N-acetylaspartate, myoinositol, and N-acetylaspartate/myoinositol is still unknown at this stage. This study aimed to explore brain neurometabolic alterations in patients with subjective cognitive decline plus using quantitative single-voxel and multi-voxel 1H-magnetic resonance spectroscopy.

Methods: A total of 91 participants were enrolled and underwent a GE 3.0-T magnetic resonance imaging, including 33 elderly controls, 27 patients with subjective cognitive decline plus, and 31 patients with amnestic mild cognitive impairment (MCI). Single-voxel and multi-voxel 1H-magnetic resonance spectroscopy were used to investigate the differences in neurometabolite levels among the three groups.

Results: Compared with elderly controls, patients with subjective cognitive decline plus showed significant decline in N-acetylaspartate and N-acetylaspartate/myoinositol values in multiple regions, and amnestic MCI participants demonstrated more significant decreased N-acetylaspartate and N-acetylaspartate/myoinositol levels in multiple regions. The combined concentrations of N-acetylaspartate with myoinositol showed an excellent discrimination between those with subjective cognitive decline plus and elderly controls as compared to that obtained using N-acetylaspartate/myoinositol ratios with the area under the receiver operating characteristic curve of 0.895 and 0.860, respectively. Likewise, the combined area under the curve for differentiating patients with subjective cognitive decline plus from amnestic MCI was obtained using the combined levels of N-acetylaspartate with myoinositol was 0.892. This was also higher than the combined area under the curve of 0.836 obtained using N-acetylaspartate/myoinositol ratios. Moreover, N-acetylaspartate levels in the left hippocampus and left posterior cingulate cortex (PCC) was positively related to the Auditory Verbal Learning Test delayed recall scores in patients with subjective cognitive decline plus, whereas only the N-acetylaspartate/myoinositol ratio was positively related to this scale scores in the left hippocampus.

Conclusions: Quantitative single-voxel and multi-voxel 1H-magnetic resonance spectroscopy can provide valuable information to detect alterative brain neurometabolites characteristics in patients with subjective cognitive decline plus. N-acetylaspartate concentrations may be used as one of the earliest neuroimaging markers at this stage, while N-acetylaspartate/myoinositol ratio could be more suitable for monitoring Alzheimer's disease progression.

Keywords: Subjective cognitive decline plus; amnestic mild cognitive impairment; brain neurometabolites; magnetic resonance spectroscopy; neuroimaging marker.