Antioxidant Mechanisms of the Oligopeptides (FWKVV and FMPLH) from Muscle Hydrolysate of Miiuy Croaker against Oxidative Damage of HUVECs

Oxid Med Cell Longev. 2021 Aug 22:2021:9987844. doi: 10.1155/2021/9987844. eCollection 2021.

Abstract

In this work, the antioxidant mechanisms of bioactive oligopeptides (FWKVV and FMPLH) from protein hydrolysate of miiuy croaker muscle against H2O2-damaged human umbilical vein endothelial cells (HUVECs) were researched systemically. The finding demonstrated that the HUVEC viability treated with ten antioxidant peptides (M1 to M10) at 100.0 μM for 24 h was not significantly affected compared with that of the normal group (P < 0.05). Furthermore, FWKVV and FMPLH at 100.0 μM could very significantly enhance the viabilities (75.89 ± 1.79% and 70.03 ± 4.37%) of oxidative-damaged HUVECs by H2O2 compared with those of the model group (51.66 ± 2.48%) (P < 0.001). The results indicated that FWKVV and FMPLH played their protective functions through increasing the levels of antioxidant enzymes including superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreasing the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and nitric oxide (NO) in oxidative-damaged HUVECs in a dose-dependent manner. In addition, the comet assay revealed that FWKVV and FMPLH could dose-dependently protect deoxyribonucleic acid (DNA) from oxidative damage in the HUVEC model. These results suggested that antioxidant pentapeptides (FWKVV and FMPLH) could serve as potential antioxidant additives applied in the food products, pharmaceuticals, and health supplements.

MeSH terms

  • Animals
  • Antioxidants
  • Human Umbilical Vein Endothelial Cells / drug effects*
  • Humans
  • Oligopeptides
  • Oxidative Stress / drug effects*
  • Perciformes

Substances

  • Antioxidants
  • Oligopeptides