Reallocation of water resources according to social, economic, and environmental parameters

Sci Rep. 2021 Sep 1;11(1):17514. doi: 10.1038/s41598-021-96680-2.

Abstract

Population growth, urbanization, and industrial development have significantly increased water demands in many countries, raising the concerns about water resources sustainability to meet the needs of humans and the environment. Furthermore, the economy-oriented allocation of water resources has caused many socio-environmental problems. The main goal of this study is to develop a system dynamics modeling framework that integrates economic, social, and environmental dimensions for the decision of water resources allocation. The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is used to rank modeling scenarios and identify the best strategy for water allocation. In the application to East Azerbaijan province of Iran, six industry groups (including chemical, food and beverage, non-metal, machinery and equipment, metal, and textile), thirteen water allocation scenarios, and five criteria (including profit index, employment index, return of surface water, groundwater sustainability index, and total allocated water) were considered. The TOPSIS results showed that in the best scenario most water was allocated to the non-metal industry with a relative distance of 0.63 to the ideal solution. On the other hand, the current water allocation scenario ranked seventh, indicating that significant improvements are required to take into account the social, economic, and environmental factors for optimal reallocation of water resources among different industry users.

Publication types

  • Research Support, Non-U.S. Gov't