A dual-frequency phase-difference method for ultrasonic hydrogen-concentration detection

Rev Sci Instrum. 2021 Aug 1;92(8):084901. doi: 10.1063/5.0047094.

Abstract

Hydrogen has a wide range of energy applications, but hydrogen energy systems can suffer from high-concentration leaks that pose security risks, therefore making the measurement of high-concentration hydrogen very important. Traditional ultrasonic gas-detection methods are based mainly on ultrasonic time-of-flight measurements and can be divided into threshold-detection and phase-difference techniques. Threshold detection suffers from low resolution and a complex structure in gas detection, while the phase-difference technique has high resolution and a simple structure but can only measure the time of flight within one period of the ultrasonic signal. In this study, a dual-frequency phase-difference technique is proposed that solves the problem of multi-period phase detection with the phase-difference technique and can be used to detect high-concentration hydrogen. Simulation analysis and an experiment show that the proposed technique can measure the multi-period phase difference accurately. The maximum hydrogen concentration can reach 50% with an uncertainty of less than 5%, which meets commercial requirements.