Sulfur-Rich Polymers Based Cathode with Epoxy/Ally Dual-Sulfur-Fixing Mechanism for High Stability Lithium-Sulfur Battery

ACS Nano. 2021 Sep 28;15(9):15027-15038. doi: 10.1021/acsnano.1c05330. Epub 2021 Sep 1.

Abstract

Lithium-sulfur (Li-S) batteries have attracted a great deal of attention for the next-generation energy storage devices due to their inherently high theoretical energy density, high natural abundance, and low cost. However, the dissolution of polysulfides in electrolytes and their undesirable shuttle behavior lead to poor cycling performance, which obstructs practical application. Herein, we report a dual-sulfur-fixing mechanism of epoxy/allyl compound/sulfur system to prepare poly(sulfur-random-4-vinyl-1,2-epoxycyclohexane) (SVE) copolymers as powerful cathode materials. Benefiting from the stable C-S bond and a uniform distribution of ultrafine Li2S/S8 in the SVE-based polymer matrix, the SVE electrodes exerted an embedding effect to reduce polysulfides migration. The thiosulfate/polythionate protective layer derived from the terminal hydroxyl group of SVE also ensured the cycle stability of SVE electrodes during cycling. As a result, optimized SVE electrodes deliver a high reversible specific capacity of 1248 mA h g-1 at rates of 0.1 C, together with a stable cycling performance of no capacity decay per cycle over more than 400 cycles. This work provides an effective strategy for the practical application of organosulfur polymers Li-S batteries and inspires the exploration of the reaction mechanism of epoxy/allyl compound/sulfur system.

Keywords: dual-sulfur-fixing mechanism; epoxy/allyl compound system; lithium−sulfur batteries; organosulfur polymers; outstanding cycling stability.