Wastewater surveillance-based city zonation for effective COVID-19 pandemic preparedness powered by early warning: A perspectives of temporal variations in SARS-CoV-2-RNA in Ahmedabad, India

Sci Total Environ. 2021 Oct 20:792:148367. doi: 10.1016/j.scitotenv.2021.148367. Epub 2021 Jun 8.

Abstract

Following the proven concept, capabilities, and limitations of detecting the RNA of Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2) in wastewater, it is pertinent to understand the utility of wastewater surveillance data on various scale. In the present work, we put forward the first wastewater surveillance-based city zonation for effective COVID-19 pandemic preparedness. A three-month data of Surveillance of Wastewater for Early Epidemic Prediction (SWEEP) was generated for the world heritage city of Ahmedabad, Gujarat, India. In this expedition, 116 wastewater samples were analyzed to detect SARS-CoV-2 RNA, from September 3rd to November 26th, 2020. A total of 111 samples were detected with at least two out of three SARS-CoV-2 genes (N, ORF 1ab, and S). Monthly variation depicted a significant decline in all three gene copies in October compared to September 2020, followed by a sharp increment in November 2020. Correspondingly, the descending order of average effective gene concentration was: November (~10,729 copies/L) > September (~3047 copies/L) > October (~454 copies/L). Monthly variation of SARS-CoV-2 RNA in the wastewater samples may be ascribed to a decline of 20.48% in the total number of active cases in October 2020 and a rise of 1.82% in November 2020. Also, the monthly recovered new cases were found to be 16.61, 20.03, and 15.58% in September, October, and November 2020, respectively. The percentage change in the gene concentration was observed in the lead of 1-2 weeks with respect to the percentage change in the provisional figures of confirmed cases. SWEEP data-based city zonation was matched with the heat map of the overall COVID-19 infected population in Ahmedabad city, and month-wise effective gene concentration variations are shown on the map. The results expound on the potential of WBE surveillance of COVID-19 as a city zonation tool that can be meaningfully interpreted, predicted, and propagated for community preparedness through advanced identification of COVID-19 hotspots within a given city.

Keywords: COVID-19; Pandemic; SARS-CoV-2; Surveillance; Wastewater based epidemiology (WBE).

MeSH terms

  • COVID-19*
  • Humans
  • India / epidemiology
  • Pandemics
  • RNA, Viral
  • SARS-CoV-2
  • Wastewater

Substances

  • RNA, Viral
  • Waste Water