Satellite and UAV-based remote sensing for assessing the flooding risk from Tibetan lake expansion and optimizing the village relocation site

Sci Total Environ. 2022 Jan 1:802:149928. doi: 10.1016/j.scitotenv.2021.149928. Epub 2021 Aug 25.

Abstract

Climate change in recent decades led to the remarkable expansions for most lakes in endorheic basins of the Tibetan Plateau (TP). Enlarged lake inundation areas may pose adverse effects and potential threats on the local human living environment, especially for high-risk villages adjacent to rapidly expanding lakes. Taking a rapidly expanding lake, Angzi Co in the central TP as a study case, we investigated the flooding risk of lake growth on the local living environment and proposed an optimized solution of village relocation selection on the basis of satellite and unmanned aerial vehicle (UAV) remote sensing. The detection of spatiotemporal variations of Angzi Co using optical and altimetric satellite observations revealed a significant area and water level increase by 81.28 km2 and 5.78 m, respectively, from 2000 to 2020. We also assessed the vertical accuracy of multi-source digital elevation model (DEM) products using Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) altimetry data and further examined the flooding risk and potential influences of lake expansion on adjacent settlements (Guozha Village). Results indicated that UAV-DEM achieves excellent advantages in depicting details of lake shoreline variations and simulating potential submergence regions, followed by Advanced Land Observing Satellite World 3D DEM (AW3D DEM). Moreover, assuming that Angzi Co maintains the water level at a growth rate of 0.29 m/a (the average change rate during 2000-2020), the village will be submerged in approximate 10 years based on our assessment. Furthermore, we designed an optimal relocation site southwest of Guozha Village and approximately 3 km away based on the GIS-MVDA method and field investigations. An initial remote sensing-based approach for assessing the flooding risk from dramatic lake expansions in the TP and optimizing the village relocation site was proposed in this study to provide an essential scientific reference for formulating risk mitigation solutions under future climate change scenarios.

Keywords: Climate change; Flooding risk; Lake; Remote sensing; Site selection; Tibetan Plateau; Unmanned aerial vehicle.

MeSH terms

  • Climate Change
  • Floods
  • Humans
  • Lakes*
  • Remote Sensing Technology*
  • Tibet