Conifer Cone (Pinus resinosa) as a Green Corrosion Inhibitor for Steel Rebar in Chloride-Contaminated Synthetic Concrete Pore Solutions

ACS Appl Mater Interfaces. 2021 Sep 15;13(36):43676-43695. doi: 10.1021/acsami.1c11994. Epub 2021 Aug 31.

Abstract

The present study has been focused on the environment-friendly corrosion inhibitor. Conifer cone (Pinus resinosa) has been used as a novel corrosion inhibitor to mitigate the corrosion of steel rebars in simulated concrete pore solutions (SCPS) in the presence and absence of chloride ions. The corrosion inhibitor is extracted by simple chemical methods. The functional groups present in the extracted conifer cone (ECC) powder are characterized as well as the surface morphology of ECC has been examined. The corrosion inhibition performance has been evaluated by the electrochemical and weight loss methods. The experimental results indicate that ECC possesses a corrosion inhibition efficiency of 81.2% at a dosage of 1000 mg·L-1, after 720 h of immersion in chloride-contaminated SCPS. Adsorption isotherm and their standard Gibbs free energy (ΔGads0) values are calculated by Langmuir, Freundlich, and Temkin isotherm methods, and the results indicate that the ECC is initially adsorbed on the steel rebar surface by physisorption and then it turns to chemisorption. The steel rebar surfaces have been characterized after exposure to the ECC containing SCPS, and the results indicate that the ECC containing cationic adsorbate molecules, which interact with steel rebar, leads to retardation of metal dissolution in corrosive chloride medium.

Keywords: concrete; conifer cone; electrochemical impedance spectroscopy; green inhibitor; potentiodynamic polarization; steel rebar corrosion.