Engineering Oversaturated Fe-N5 Multifunctional Catalytic Sites for Durable Lithium-Sulfur Batteries

Angew Chem Int Ed Engl. 2021 Dec 13;60(51):26622-26629. doi: 10.1002/anie.202108882. Epub 2021 Oct 1.

Abstract

Lithium-sulfur (Li-S) batteries are regarded as a promising next-generation system for advanced energy storage owing to a high theoretical energy density of 2600 Wh kg-1 . However, the practical implementation of Li-S batteries has been thwarted by the detrimental shuttling behavior of polysulfides, and the sluggish kinetics in electrochemical processes. Herein, a novel single atom (SA) catalyst with oversaturated Fe-N5 coordination structure (Fe-N5 -C) is precisely synthesized by an absorption-pyrolysis strategy and introduced as an effective sulfur host material. The experimental characterizations and theoretical calculations reveal synergism between atomically dispersed Fe-N5 active sites and the unique carbon support. The results exhibit that the sulfur composite cathode built on the Fe-N5 -C can not only adsorb polysulfides via chemical interaction, but also boost the redox reaction kinetics, thus mitigating the shuttle effect. Meanwhile, the robust three-dimensional nitrogen doped carbon nanofiber with large surface area, and high porosity enables strong physical confinement and fast electron/ion transfer process. Attributed to such unique features, Li-S batteries with S/Fe-N5 -C composite cathode realize outstanding cyclability and rate capability, as well as high areal capacities under raised sulfur loading, which demonstrates great potential in developing advanced Li-S batteries.

Keywords: conjugated polymer; lithium-sulfur battery; mesoporosity; oversaturation; single-atom catalyst.