A review of physical and engineering factors potentially affecting shear wave elastography

J Med Ultrason (2001). 2021 Oct;48(4):403-414. doi: 10.1007/s10396-021-01127-w. Epub 2021 Aug 28.

Abstract

It has been recognized that tissue stiffness provides useful diagnostic information, as with palpation as a screening for diseases such as cancer. In recent years, shear wave elastography (SWE), a technique for evaluating and imaging tissue elasticity quantitatively and objectively in diagnostic imaging, has been put into practical use, and the amount of clinical knowledge about SWE has increased. In addition, some guidelines and review papers regarding technology and clinical applications have been published, and the status as a diagnostic technology is in the process of being established. However, there are still unclear points about the interpretation of shear wave speed (SWS) and converted elastic modulus in SWE. To clarify these, it is important to investigate the factors that affect the SWS and elastic modulus. Therefore, physical and engineering factors that potentially affect the SWS and elastic modulus are discussed in this review paper, based on the principles of SWE and a literature review. The physical factors include the propagation properties of shear waves, mechanical properties (viscoelasticity, nonlinearity, and anisotropy), and size and shape of target tissues. The engineering factors include the region of interest depth and signal processing. The aim of this review paper is not to provide an answer to the interpretation of SWS. It is to provide information for readers to formulate and verify the hypothesis for the interpretation. Therefore, methods to verify the hypothesis for the interpretation are also reviewed. Finally, studies on the safety of SWE are discussed.

Keywords: Engineering factors; Interpretation; Physical factors; Shear wave elastography; Shear wave speed.

Publication types

  • Review

MeSH terms

  • Elastic Modulus
  • Elasticity Imaging Techniques*
  • Humans