Adhesive Performance of Acrylic Pressure-Sensitive Adhesives from Different Preparation Processes

Polymers (Basel). 2021 Aug 7;13(16):2627. doi: 10.3390/polym13162627.

Abstract

A series of pressure-sensitive adhesives (PSAs) was prepared using a constant monomeric composition and different preparation processes to investigate the best combination to obtain the best balance between peel resistance, tack, and shear resistance. The monomeric composition was a 1:1 combination of two different water-based acrylic polymers-one with a high shear resistance (A) and the other with a high peel resistance and tack (B). Two different strategies were applied to prepare the adhesives: physical blending of polymers A and B and in situ emulsion polymerization of A + B, either in one or two steps; in this last case, by polymerizing A or B first. To characterize the polymer, the average particle size and viscosity were analyzed. The glass transition temperature (Tg) was determined by differential scanning calorimetry (DSC). The tetrahydrofuran (THF) insoluble polymer fraction was used to calculate the gel content, and the soluble part was used to determine the average sol molecular weight by means of gel permeation chromatography (GPC). The adhesive performance was assessed by measuring tack as well as peel and shear resistance. The mechanical properties were obtained by calculating the shear modulus and determination of maximum stress and the deformation energy. Moreover, an adhesive performance index (API) was designed to determine which samples are closest to the requirements demanded by the self-adhesive label market.

Keywords: acrylic pressure-sensitive adhesives; emulsion polymerization; glass bottle labels; post-polymerization blending.