An Advanced Noise Reduction and Edge Enhancement Algorithm

Sensors (Basel). 2021 Aug 10;21(16):5391. doi: 10.3390/s21165391.

Abstract

Complementary metal-oxide-semiconductor (CMOS) image sensors can cause noise in images collected or transmitted in unfavorable environments, especially low-illumination scenarios. Numerous approaches have been developed to solve the problem of image noise removal. However, producing natural and high-quality denoised images remains a crucial challenge. To meet this challenge, we introduce a novel approach for image denoising with the following three main contributions. First, we devise a deep image prior-based module that can produce a noise-reduced image as well as a contrast-enhanced denoised one from a noisy input image. Second, the produced images are passed through a proposed image fusion (IF) module based on Laplacian pyramid decomposition to combine them and prevent noise amplification and color shift. Finally, we introduce a progressive refinement (PR) module, which adopts the summed-area tables to take advantage of spatially correlated information for edge and image quality enhancement. Qualitative and quantitative evaluations demonstrate the efficiency, superiority, and robustness of our proposed method.

Keywords: contrast enhancement; deep image prior; edge enhancement; noise removal.

MeSH terms

  • Algorithms*
  • Image Enhancement*
  • Signal-To-Noise Ratio