Microvesicles transfer mitochondria and increase mitochondrial function in brain endothelial cells

J Control Release. 2021 Oct 10:338:505-526. doi: 10.1016/j.jconrel.2021.08.038. Epub 2021 Aug 24.

Abstract

We have demonstrated, for the first time that microvesicles, a sub-type of extracellular vesicles (EVs) derived from hCMEC/D3: a human brain endothelial cell (BEC) line transfer polarized mitochondria to recipient BECs in culture and to neurons in mice acute brain cortical and hippocampal slices. This mitochondrial transfer increased ATP levels by 100 to 200-fold (relative to untreated cells) in the recipient BECs exposed to oxygen-glucose deprivation, an in vitro model of cerebral ischemia. We have also demonstrated that transfer of microvesicles, the larger EV fraction, but not exosomes resulted in increased mitochondrial function in hypoxic endothelial cultures. Gene ontology and pathway enrichment analysis of EVs revealed a very high association to glycolysis-related processes. In comparison to heterotypic macrophage-derived EVs, BEC-derived EVs demonstrated a greater selectivity to transfer mitochondria and increase endothelial cell survival under ischemic conditions.

Keywords: BBB protection; Exosomes; Extracellular vesicles; Ischemic stroke; Microvesicles; Mitochondrial function; Mitochondrial transfer.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain
  • Cell-Derived Microparticles*
  • Endothelial Cells / metabolism
  • Extracellular Vesicles* / metabolism
  • Mice
  • Mitochondria