Cationic Alternating Polypeptide Fixed on Polyurethane at Multiple Sites for Excellent Antibacterial and Antifouling Properties

Langmuir. 2021 Sep 14;37(36):10657-10667. doi: 10.1021/acs.langmuir.1c00997. Epub 2021 Aug 27.

Abstract

Bacterial infection and blockage are severe problems for polyurethane (PU) catheters and there is an urgent demand for surface-functionalized polyurethane. Herein, a cationic alternating copolymer comprising allyl-substituted ornithine and glycine (allyl-substituted poly(Orn-alter-Gly)) with abundant carbon-carbon double bond functional groups (C═C) is designed. Polyurethane is prepared with a large quantity of C═C groups (PU-D), and different amounts of allyl-substituted poly(Orn-alter-Gly) are grafted onto the PU-D surface (PU-D-2%AMPs and PU-D-20%AMPs) via the C═C functional groups. The chemical structures of the allyl-substituted poly(Orn-alter-Gly) and polyurethane samples (PU, PU-D, PU-D-2%AMPs, and PU-D-20%AMPs) are characterized and the results reveal that allyl-substituted poly(Orn-alter-Gly) is decorated on the polyurethane. PU-D-20%AMPs shows excellent antibacterial activity against Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus because of the high surface potential caused by cationic allyl-substituted poly(Orn-alter-Gly), and it also exhibits excellent long-term antibacterial activity and antibiofilm properties. PU-D-20%AMPs also has excellent antifouling properties because the cationic copolymer is fixed at multiple reactive sites, thus avoiding the formation of movable long chain brush. A strong surface hydration barrier is also formed to prevent adsorption of proteins and ions, and in vivo experiments reveal excellent biocompatibility. This flexible strategy to prepare dual-functional polyurethane surfaces with antibacterial and antifouling properties has large potential in biomedical implants.

MeSH terms

  • Anti-Bacterial Agents / toxicity
  • Biofouling* / prevention & control
  • Peptides / pharmacology
  • Polyurethanes* / toxicity
  • Staphylococcus aureus
  • Surface Properties

Substances

  • Anti-Bacterial Agents
  • Peptides
  • Polyurethanes