Efficacy of five commercial household insecticide aerosol sprays against pyrethroid resistant Aedes aegypti and Culex quinquefasciatus mosquitoes in Thailand

Pestic Biochem Physiol. 2021 Oct:178:104911. doi: 10.1016/j.pestbp.2021.104911. Epub 2021 Jul 1.

Abstract

Commercial insecticide aerosol sprays are widely used in households for controlling Aedes aegypti and Culex quinquefasciatus, the primary vectors of dengue virus and filarial worm, respectively. In Thailand, however, both mosquitoes are resistant to pyrethroids conferred by knockdown resistance (kdr) mutations, V1016G and F1534C in Ae. aegypti and L1014F in Cx. quinquefasciatus. This study evaluated the efficacy of five sprays (coded as AS1-AS5) with different formulations of pyrethroids against wild mosquitoes by using a cage bioassay in a furnished bedroom of a house. Five cages containing wild mosquitoes and five cages containing a pyrethroid susceptible strain of Ae. aegypti (25 females each), as a bio-indicator, were allocated in the room and spraying was operated for 15 s. Survivors and dead mosquitoes were genotyped individually for the kdr mutations using allele-specific PCR methods. Both mosquito species showed a high resistance to permethrin and deltamethrin with 12.5-58.0% mortality rates. For controlling Ae. aegypti, the spray AS4 showed the highest efficacy (mortality rates 76.0-100.0%, mean 95.2%), followed by AS2 (73.0-100.0%, mean 93.8%). For controlling Cx. quinquefasciatus, the best result was obtained from AS4 (66.0-98.0% mortality, mean 89.8%), followed by AS2 (73.0-97.0%, mean 84.5%). The sprays (AS4 and AS2) containing both type I and type II pyrethroids were more effective than those containing only type I pyrethroids or pyrethrum with the synergist piperonyl butoxide. The mutant G1016 and F1014 allele frequencies were significantly higher in the survivor groups than the dead groups of Ae. aegypti and Cx. quinquefasciatus, respectively, (P < 0.05). The efficacy of the sprays varied depending on the mosquito species, formulations, nozzles and locations of caged mosquitoes. The V1016G and L1014F mutations are associated with the reduced efficacy of sprays used in households for controlling resistant Ae. aegypti and Cx. quinquefasciatus mosquitoes, respectively.

Keywords: Aedes aegypti; Aerosol sprays; Culex quinquefasciatus; Insecticide resistance; Knockdown resistance.

MeSH terms

  • Aedes* / genetics
  • Aerosols
  • Animals
  • Culex* / genetics
  • Insecticide Resistance / genetics
  • Insecticides* / pharmacology
  • Mosquito Vectors / genetics
  • Pyrethrins*
  • Thailand

Substances

  • Aerosols
  • Insecticides
  • Pyrethrins