Expression Profile of Genes Encoding Proteins Involved in Regulation of Vasculature Development and Heart Muscle Morphogenesis-A Transcriptomic Approach Based on a Porcine Model

Int J Mol Sci. 2021 Aug 16;22(16):8794. doi: 10.3390/ijms22168794.

Abstract

Despite significant advances in treatment of acute coronary syndromes (ACS) many subjects still develop heart failure due to significantly reduced ejection fraction. Currently, there are no commonly available treatment strategies that replace the infarcted/dysfunctional myocardium. Therefore, understanding the mechanisms that control the regeneration of the heart muscle is important. The development of new coronary vessels plays a pivotal role in cardiac regeneration. Employing microarray expression assays and RT-qPCR validation expression pattern of genes in long-term primary cultured cells isolated form the right atrial appendage (RAA) and right atrium (RA) was evaluated. After using DAVID software, it indicated the analysis expression profiles of genes involved in ontological groups such as: "angiogenesis", "blood vessel morphogenesis", "circulatory system development", "regulation of vasculature development", and "vasculature development" associated with the process of creation new blood vessels. The performed transcriptomic comparative analysis between two different compartments of the heart muscle allowed us to indicate the presence of differences in the expression of key transcripts depending on the cell source. Increases in culture intervals significantly increased expression of SFRP2, PRRX1 genes and some other genes involved in inflammatory process, such as: CCL2, IL6, and ROBO1. Moreover, the right atrial appendage gene encoding lysyl oxidase (LOX) showed much higher expression compared to the pre-cultivation state.

Keywords: cell culture; coronary vessels; neovascularization; transcriptomic analysis.

MeSH terms

  • Animals
  • Cells, Cultured
  • Coronary Vessels / chemistry
  • Coronary Vessels / growth & development*
  • Exome Sequencing
  • Gene Expression Profiling / methods*
  • Gene Expression Regulation, Developmental
  • Gene Regulatory Networks
  • Muscle Development*
  • Myocardium / chemistry
  • Myocardium / cytology*
  • Oligonucleotide Array Sequence Analysis
  • Primary Cell Culture
  • Swine