Engineering of Yeast Old Yellow Enzyme OYE3 Enables Its Capability Discriminating of (E)-Citral and (Z)-Citral

Molecules. 2021 Aug 20;26(16):5040. doi: 10.3390/molecules26165040.

Abstract

The importance of yeast old yellow enzymes is increasingly recognized for direct asymmetric reduction of (E/Z)-citral to (R)-citronellal. As one of the most performing old yellow enzymes, the enzyme OYE3 from Saccharomyces cerevisiae S288C exhibited complementary enantioselectivity for the reduction of (E)-citral and (Z)-citral, resulting in lower e.e. value of (R)-citronellal in the reduction of (E/Z)-citral. To develop a novel approach for the direct synthesis of enantio-pure (R)-citronellal from the reduction of (E/Z)-citral, the enzyme OYE3 was firstly modified by semi-rational design to improve its (R)-enantioselectivity. The OYE3 variants W116A and S296F showed strict (R)-enantioselectivity in the reduction of (E)-citral, and significantly reversed the (S)-enantioselectivity in the reduction of (Z)-citral. Next, the double substitution of OYE3 led to the unique variant S296F/W116G, which exhibited strict (R)-enantioselectivity in the reduction of (E)-citral and (E/Z)-citral, but was not active on (Z)-citral. Relying on its capability discriminating (E)-citral and (Z)-citral, a new cascade reaction catalyzed by the OYE3 variant S296F/W116G and glucose dehydrogenase was developed, providing the enantio-pure (R)-citronellal and the retained (Z)-citral after complete reduction of (E)-citral.

Keywords: (E)-citral; (R)-citronellal; (Z)-citral; asymmetric reduction; glucose dehydrogenase; old yellow enzyme; resolution.

MeSH terms

  • Acyclic Monoterpenes / metabolism*
  • Aldehydes / metabolism
  • Catalysis
  • Glucose 1-Dehydrogenase / metabolism
  • NADPH Dehydrogenase / metabolism*
  • Saccharomyces cerevisiae / enzymology*
  • Saccharomyces cerevisiae Proteins / metabolism*

Substances

  • Acyclic Monoterpenes
  • Aldehydes
  • Saccharomyces cerevisiae Proteins
  • Glucose 1-Dehydrogenase
  • NADPH Dehydrogenase
  • citronellal
  • citral