The Features of Martensitic Transformation in 12% Chromium Ferritic-Martensitic Steels

Materials (Basel). 2021 Aug 11;14(16):4503. doi: 10.3390/ma14164503.

Abstract

An anomaly in martensitic transformation (the effect of martensitic two-peak splitting in the temperature-dependent thermal expansion coefficient) in complex alloyed 12% chromium steels Fe-12%Cr-Ni-Mo-W-Nb-V-B (ChS-139), Fe-12%Cr-Mo-W-Si-Nb-V (EP-823) and Fe-12%Cr-2%W-V-Ta-B (EK-181) was investigated in this study. This effect is manifested in steels with a higher degree of alloying (ChS-139). During varying temperature regimes in dilatometric analysis, it was found that the splitting of the martensitic peak was associated with the superposition of two martensitic transformations of austenite depleted and enriched with alloying elements. The anomaly was subsequently eliminated by homogenization of the steel composition due to high-temperature aging in the γ-region. It was shown that if steel is heated to 900 °C, which lies in the (α + γ) phase region or slightly higher during cooling, then the decomposition of austenite proceeds in two stages: during the first stage, austenite is diffused into ferrite with carbides; during the second stage, shear transformation of austenite to martensite occurs.

Keywords: ferritic–martensitic steels; martensitic transformation; microstructure; thermal dilatometric analysis.