Elementary, Atomic-Level Friction Processes in Systems with Metallic Inclusions-Systematic Simulations for a Wide Range of Local Pressures

Materials (Basel). 2021 Aug 4;14(16):4351. doi: 10.3390/ma14164351.

Abstract

In this work, simulations of friction at the atomic level were performed to evaluate the influence of inclusions coming from metallic nanoadditives in the friction pair. The simple 2D model was applied considering appropriate values of Lennard-Jones potential parameters for given sets of interacting atoms. The real sliding pairs were replaced by effective equivalents consisting of several atoms. The calculations were based on the pseudo-static approximation. The simplicity of the model enabled to repeat the fast calculations in a very wide range of local pressures and for several types of atomic tribopairs. The performed simulations demonstrated a strong dependence of the coefficient of friction (COF) on the atomic environment of the atoms constituting a tribopair. It was confirmed theoretically that the Mo-Fe pair is characterized by lower atomic COF than Fe-Fe, Cu-Fe, and Ag-Fe pairs. This points to the great applicational potential of metallic molybdenum coating applications in tribological systems. Moreover, it was demonstrated that, although Cu-Cu and Ag-Ag pairs are characterized by relatively high COF, they lower the friction as inclusions in Fe surfaces.

Keywords: Lennard–Jones potential; atomic-level friction; metallic inclusions; simulations.