Longevity Regulation by Proline Oxidation in Yeast

Microorganisms. 2021 Aug 2;9(8):1650. doi: 10.3390/microorganisms9081650.

Abstract

Proline is a pivotal and multifunctional amino acid that is used not only as a nitrogen source but also as a stress protectant and energy source. Therefore, proline metabolism is known to be important in maintaining cellular homeostasis. Here, we discovered that proline oxidation, catalyzed by the proline oxidase Put1, a mitochondrial flavin-dependent enzyme converting proline into ∆1-pyrroline-5-carboxylate, controls the chronological lifespan of the yeast Saccharomyces cerevisiae. Intriguingly, the yeast strain with PUT1 deletion showed a reduced chronological lifespan compared with the wild-type strain. The addition of proline to the culture medium significantly increased the longevity of wild-type cells but not that of PUT1-deleted cells. We next found that induction of the transcriptional factor Put3-dependent PUT1 and degradation of proline occur during the aging of yeast cells. Additionally, the lifespan of the PUT3-deleted strain, which is deficient in PUT1 induction, was shorter than that of the wild-type strain. More importantly, the oxidation of proline by Put1 helped maintain the mitochondrial membrane potential and ATP production through the aging period. These results indicate that mitochondrial energy metabolism is maintained through oxidative degradation of proline and that this process is important in regulating the longevity of yeast cells.

Keywords: Saccharomyces cerevisiae; chronological lifespan; energy metabolism; homeostasis; longevity; proline; proline oxidase.