Exploring the Role of Cognition in the Annual Fall Migration of the Monarch Butterfly (Danaus plexippus)

Insects. 2021 Aug 23;12(8):760. doi: 10.3390/insects12080760.

Abstract

Each fall, monarch butterflies in eastern North America undergo an extraordinary long-distance migration to wintering areas in central Mexico, where they remain until returning northward in the spring. Migrants survive the overwintering period by metabolizing lipid reserves accumulated exclusively though floral nectar; however, there is little known about how individuals maximize foraging efficiency in the face of floral environments that constantly change in complex and unpredictable ways along their migratory route. Here, a proboscis extension paradigm is used to investigate the role of cognition during the foraging phase of monarch migration. Male and female migratory butterflies were consecutively trained to discriminate between two color and odor cues and then tested for their ability to simultaneously retain the information on the reward value of each cue in memory without reinforcement over a period of 7 days. To gain further insight into cognitive abilities of monarchs as a migratory species, a second set of captive-reared males and females were tested under harnessed conditions at the same time as wild-caught fall migrants. Results showed that male and female migrants can learn the reward properties of color and odor cues with over 75% accuracy after less than 40 s of exposure and can simultaneously retain visual and olfactory information predicting the availability of floral rewards in memory without reinforcement for at least 7 days. Captive-reared male butterflies also showed the ability to retain visual and olfactory information in long-term memory for 7 days; however, 80% of captive-reared females could not retain color cues in long-term memory for more than 24 h. These novel findings are consistent with the view that monarch butterflies, as a migratory species, have enhancements to long-term memory that enable them to minimize the amount of time and energy wasted searching for suitable nectar sources during their annual fall migration, thereby optimizing migratory performance and increasing the chance of overwinter survival. The possibility that female monarchs undergo a seasonal change in visual long-term memory warrants further empirical investigation.

Keywords: cognition; learning ability; long-term memory; migration; monarch butterfly; olfactory system; visual system.