Understanding Cervical Cancer through Proteomics

Cells. 2021 Jul 22;10(8):1854. doi: 10.3390/cells10081854.

Abstract

Cancer is one of the leading public health issues worldwide, and the number of cancer patients increases every day. Particularly, cervical cancer (CC) is still the second leading cause of cancer death in women from developing countries. Thus, it is essential to deepen our knowledge about the molecular pathogenesis of CC and propose new therapeutic targets and new methods to diagnose this disease in its early stages. Differential expression analysis using high-throughput techniques applied to biological samples allows determining the physiological state of normal cells and the changes produced by cancer development. The cluster of differential molecular profiles in the genome, the transcriptome, or the proteome is analyzed in the disease, and it is called the molecular signature of cancer. Proteomic analysis of biological samples of patients with different grades of cervical intraepithelial neoplasia (CIN) and CC has served to elucidate the pathways involved in the development and progression of cancer and identify cervical proteins associated with CC. However, several cervical carcinogenesis mechanisms are still unclear. Detecting pathologies in their earliest stages can significantly improve a patient's survival rate, prognosis, and recurrence. The present review is an update on the proteomic study of CC.

Keywords: biomarkers; cervical cancer; gene differential expression; proteomic.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Biomarkers, Tumor / genetics
  • Biomarkers, Tumor / metabolism*
  • Female
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Metabolome
  • Prognosis
  • Proteome*
  • Proteomics*
  • Signal Transduction
  • Transcriptome
  • Uterine Cervical Neoplasms / genetics
  • Uterine Cervical Neoplasms / metabolism*
  • Uterine Cervical Neoplasms / pathology

Substances

  • Biomarkers, Tumor
  • Proteome