Effects of Treadmill Exercise on Neural Mitochondrial Functions in Parkinson's Disease: A Systematic Review of Animal Studies

Biomedicines. 2021 Aug 13;9(8):1011. doi: 10.3390/biomedicines9081011.

Abstract

This systematic review sought to determine the effects of treadmill exercise on the neural mitochondrial respiratory deficiency and neural mitochondrial quality-control dysregulation in Parkinson's disease. PubMed, Web of Science, and EMBASE databases were searched through March 2020. The English-published animal studies that mentioned the effects of treadmill exercise on neural mitochondria in Parkinson's disease were included. The CAMARADES checklist was used to assess the methodological quality of the studies. Ten controlled trials were included (median CAMARADES score = 5.7/10) with various treadmill exercise durations (1-18 weeks). Seven studies analyzed the neural mitochondrial respiration, showing that treadmill training attenuated complex I deficits, cytochrome c release, ATP depletion, and complexes II-V abnormalities in Parkinson's disease. Nine studies analyzed the neural mitochondrial quality-control, reporting that treadmill exercise improved mitochondrial biogenesis, mitochondrial fusion, and mitophagy in Parkinson's disease. The review findings supported the hypothesis that treadmill training could attenuate both neural mitochondrial respiratory deficiency and neural mitochondrial quality-control dysregulation in Parkinson's disease, suggesting that treadmill training might slow down the progression of Parkinson's disease.

Keywords: Parkinson’s disease; neural mitochondrial functions; treadmill exercise.

Publication types

  • Review