Phylogenetic Signal, Congruence, and Uncertainty across Bacteria and Archaea

Mol Biol Evol. 2021 Dec 9;38(12):5514-5527. doi: 10.1093/molbev/msab254.

Abstract

Reconstruction of the Tree of Life is a central goal in biology. Although numerous novel phyla of bacteria and archaea have recently been discovered, inconsistent phylogenetic relationships are routinely reported, and many inter-phylum and inter-domain evolutionary relationships remain unclear. Here, we benchmark different marker genes often used in constructing multidomain phylogenetic trees of bacteria and archaea and present a set of marker genes that perform best for multidomain trees constructed from concatenated alignments. We use recently-developed Tree Certainty metrics to assess the confidence of our results and to obviate the complications of traditional bootstrap-based metrics. Given the vastly disparate number of genomes available for different phyla of bacteria and archaea, we also assessed the impact of taxon sampling on multidomain tree construction. Our results demonstrate that biases between the representation of different taxonomic groups can dramatically impact the topology of resulting trees. Inspection of our highest-quality tree supports the division of most bacteria into Terrabacteria and Gracilicutes, with Thermatogota and Synergistota branching earlier from these superphyla. This tree also supports the inclusion of the Patescibacteria within the Terrabacteria as a sister group to the Chloroflexota instead of as a basal-branching lineage. For the Archaea, our tree supports three monophyletic lineages (DPANN, Euryarchaeota, and TACK/Asgard), although we note the basal placement of the DPANN may still represent an artifact caused by biased sequence composition. Our findings provide a robust and standardized framework for multidomain phylogenetic reconstruction that can be used to evaluate inter-phylum relationships and assess uncertainty in conflicting topologies of the Tree of Life.

Keywords: Gracilicutes; Patescibacteria; Terrabacteria; Tree of Life; concatenated phylogenetic trees; phylogenetic uncertainty; taxon sampling.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Archaea* / genetics
  • Bacteria* / genetics
  • Biological Evolution
  • Phylogeny
  • Uncertainty