Uncoupling Thermotolerance and Growth Performance in Chinook Salmon: Blood Biochemistry and Immune Capacity

Metabolites. 2021 Aug 19;11(8):547. doi: 10.3390/metabo11080547.

Abstract

Ocean warming and extreme sea surface temperature anomalies are threatening wild and domesticated fish stocks in various regions. Understanding mechanisms for thermotolerance and processes associated with divergent growth performance is key to the future success of aquaculture and fisheries management. Herein, we exposed Chinook salmon (Oncorhynchus tshawytscha) to environmentally relevant water temperatures (19-20 °C) approaching their upper physiological limit for three months and sought to identify blood biomarkers associated with thermal stress and resilience. In parallel, blood biochemical associations with growth performance were also investigated. Temperature stress-activated leukocyte apoptosis induced a minor immune response, and influenced blood ion profiles indicative of osmoregulatory perturbation, regardless of how well fish grew. Conversely, fish displaying poor growth performance irrespective of temperature exhibited numerous biomarker shifts including haematology indices, cellular-based enzyme activities, and blood clinical chemistries associated with malnutrition and disturbances in energy metabolism, endocrine functioning, immunocompetence, redox status, and osmoregulation. Findings provide insight into mechanisms of stress tolerance and compromised growth potential. Biochemical phenotypes associated with growth performance and health can potentially be used to improve selective breeding strategies.

Keywords: Onchorynchus tshawytscha; aquaculture; biochemical profiles; biomarkers; fish health; immunology; king salmon; marine heatwaves; summer mortality; thermal stress.