E2EDNA: Simulation Protocol for DNA Aptamers with Ligands

J Chem Inf Model. 2021 Sep 27;61(9):4139-4144. doi: 10.1021/acs.jcim.1c00696. Epub 2021 Aug 26.

Abstract

We present E2EDNA, a simulation protocol and accompanying code for the molecular biophysics and materials science communities. This protocol is both easy to use and sufficiently efficient to simulate single-stranded (ss)DNA and small analyte systems that are important to cellular processes and nanotechnologies such as DNA aptamer-based sensors. Existing computational tools used for aptamer design focus on cost-effective secondary structure prediction and motif analysis in the large data sets produced by SELEX experiments. As a rule, they do not offer flexibility with respect to the choice of the theoretical engine or direct access to the simulation platform. Practical aptamer optimization often requires higher accuracy predictions for only a small subset of sequences suggested, e.g., by SELEX experiments, but in the absence of a streamlined procedure, this task is extremely time and expertise intensive. We address this gap by introducing E2EDNA, a computational framework that accepts a DNA sequence in the FASTA format and the structures of the desired ligands and performs approximate folding followed by a refining step, analyte complexation, and molecular dynamics sampling at the desired level of accuracy. As a case study, we simulate a DNA-UTP (uridine triphosphate) complex in water using the state-of-the-art AMOEBA polarizable force field. The code is available at https://github.com/InfluenceFunctional/E2EDNA.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aptamers, Nucleotide*
  • Computer Simulation
  • Ligands
  • SELEX Aptamer Technique*

Substances

  • Aptamers, Nucleotide
  • Ligands