Biodegradable macromers for implant bulk and surface engineering

Biol Chem. 2021 Aug 24;402(11):1357-1374. doi: 10.1515/hsz-2021-0161. Print 2021 Oct 26.

Abstract

Macromers, polymeric molecules with at least two functional groups for cross-polymerization, are interesting materials to tailor mechanical, biochemical and degradative bulk and surface properties of implants for tissue regeneration. In this review we focus on macromers with at least one biodegradable building block. Manifold design options, such as choice of polymeric block(s), optional core molecule and reactive groups, as well as cross-co-polymerization with suitable anchor or linker molecules, allow the adaptation of macromer-based biomaterials towards specific application requirements in both hard and soft tissue regeneration. Implants can be manufactured from macromers using additive manufacturing as well as molding and templating approaches. This review summarizes and discusses the overall concept of biodegradable macromers and recent approaches for macromer processing into implants as well as techniques for surface modification directed towards bone regeneration. These aspects are reviewed including a focus on the authors' contributions to the field through research within the collaborative research project Transregio 67.

Keywords: biodegradable polymeric blocks; implant surface modification; porous scaffolds; regenerative medicine; tissue engineering.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Biocompatible Materials / chemistry
  • Biocompatible Materials / metabolism*
  • Macromolecular Substances / chemistry
  • Macromolecular Substances / metabolism
  • Molecular Structure
  • Polymers / chemistry
  • Polymers / metabolism*
  • Surface Properties
  • Tissue Engineering*

Substances

  • Biocompatible Materials
  • Macromolecular Substances
  • Polymers