Multi-targeted properties of the probiotic saccharomyces cerevisiae CNCM I-3856 against enterotoxigenic escherichia coli (ETEC) H10407 pathogenesis across human gut models

Gut Microbes. 2021 Jan-Dec;13(1):1953246. doi: 10.1080/19490976.2021.1953246.

Abstract

Enterotoxigenic Escherichia coli (ETEC) is one of the most common causes of acute traveler's diarrhea. Adhesins and enterotoxins constitute the major ETEC virulence traits. With the dramatic increase in antibiotic resistance, probiotics are considered a wholesome alternative to prevent or treat ETEC infections. Here, we examined the antimicrobial properties of the probiotic Saccharomyces cerevisiae CNCM I-3856 against ETEC H10407 pathogenesis upon co-administration in the TNO gastrointestinal Model (TIM-1), simulating the physicochemical and enzymatic conditions of the human upper digestive tract and preventive treatment in the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME), integrating microbial populations of the ileum and ascending colon. Interindividual variability was assessed by separate M-SHIME experiments with microbiota from six human individuals. The probiotic did not affect ETEC survival along the digestive tract. However, ETEC pathogenicity was significantly reduced: enterotoxin encoding virulence genes were repressed, especially in the TIM-1 system, and a lower enterotoxin production was noted. M-SHIME experiments revealed that 18-days probiotic treatment stimulate the growth of Bifidobacterium and Lactobacillus in different gut regions (mucosal and luminal, ileum and ascending colon) while a stronger metabolic activity was noted in terms of short-chain fatty acids (acetate, propionate, and butyrate) and ethanol production. Moreover, the probiotic pre-treated microbiota displayed a higher robustness in composition following ETEC challenge compared to the control condition. We thus demonstrated the multi-inhibitory properties of the probiotic S. cerevisiae CNCM I-3856 against ETEC in the overall simulated human digestive tract, regardless of the inherent variability across individuals in the M-SHIME.

Keywords: ETEC; virulence; Probiotic; Saccharomyces cerevisiae; antagonism effect; enterotoxin; foodborne pathogen; gut microbiota.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Enterotoxigenic Escherichia coli / drug effects*
  • Escherichia coli Infections / drug therapy*
  • Escherichia coli Infections / physiopathology
  • Foodborne Diseases / drug therapy*
  • Gastrointestinal Microbiome / drug effects*
  • Humans
  • Probiotics / pharmacology*
  • Probiotics / therapeutic use*
  • Saccharomyces cerevisiae / chemistry
  • Virulence / drug effects*

Grants and funding

This work was supported by a fellowship from Ministère de la Recherche (France) to Charlène Roussel. Experiments were funded by Lesaffre Company (Marcq-en-Baroeul, France).