Effect of Arylmethylene Substitutions on Molecular Structure, Optoelectronic Properties and Photovoltaic Performance of Dithienocyclopentafluorene-Based Small-Molecule Acceptors

Chemistry. 2021 Oct 19;27(58):14508-14519. doi: 10.1002/chem.202102252. Epub 2021 Sep 24.

Abstract

Two dithienocyclopentafluorene-based small-molecule acceptors (SMAs) were developed that feature methylene-functionalized conjugated side chains, to study the effect of arylmethylene substitution and its number on structure, optoelectronic properties and device performance. Results showed that two SMAs have better absorption properties and planarity, lower bandgaps and higher LUMOs compared with the control SMA without conjugated side chains. The synthesized SMAs were tested in polymer solar cells for examples of their applicability. This work argues that the introduction of methylene-functionalized conjugated side chains has great potential in tuning molecular structure, optoelectronic properties, device physics and photovoltaic performance of SMAs.

Keywords: DFT calculations; dithienocyclopentafluorene; photovoltaics; small-molecule acceptors; solar cells.