Decoding Hand Movement Types and Kinematic Information From Electroencephalogram

IEEE Trans Neural Syst Rehabil Eng. 2021:29:1744-1755. doi: 10.1109/TNSRE.2021.3106897. Epub 2021 Sep 6.

Abstract

Brain-computer interfaces (BCIs) have achieved successful control of assistive devices, e.g. neuroprosthesis or robotic arm. Previous research based on hand movements Electroencephalogram (EEG) has shown limited success in precise and natural control. In this study, we explored the possibilities of decoding movement types and kinematic information for three reach-and-execute actions using movement-related cortical potentials (MRCPs). EEG signals were acquired from 12 healthy subjects during the execution of pinch, palmar and precision disk rotation actions that involved two levels of speeds and forces. In the case of discrimination between hand movement types under each of four different kinematics conditions, we obtained the average peak accuracies of 83.44% and 73.83% for the binary and 3-class classification, respectively. In the case of discrimination between different movement kinematics for each of three actions, the average peak accuracies of 82.9% and 58.2% could be achieved for the two and 4-class scenario. In both cases, peak decoding performance was significantly higher than the subject-specific chance level. We found that hand movement types all could be classified when these actions were executed at four different kinematic parameters. Meanwhile, for each of three hand movements, we decoded movement parameters successfully. Furthermore, the feasibility of decoding hand movements during hand retraction process was also demonstrated. These findings are of great importance for controlling neuroprosthesis or other rehabilitation devices in a fine and natural way, which would drastically increase the acceptance of motor impaired users.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomechanical Phenomena
  • Brain-Computer Interfaces*
  • Electroencephalography
  • Hand*
  • Humans
  • Movement