A Powerful One-Step Puffing Carbonization Method for Construction of Versatile Carbon Composites with High-Efficiency Energy Storage

Adv Mater. 2021 Oct;33(40):e2102796. doi: 10.1002/adma.202102796. Epub 2021 Aug 23.

Abstract

Carbon materials play a critical role in the advancement of electrochemical energy storage and conversion. Currently, it is still a great challenge to fabricate versatile carbon-based composites with controlled morphology, adjustable dimension, and tunable composition by a one-step synthesis process. In this work, a powerful one-step maltose-based puffing carbonization technology is reported to construct multiscale carbon-based composites on large scale. A quantity of composite examples (e.g., carbon/metal oxides, carbon/metal nitrides, carbon/metal carbides, carbon/metal sulfides, carbon/metals, metal/semiconductors, carbon/carbons) are prepared and demonstrated with required properties. These well-designed composites show advantages of large porosity, hierarchical porous structure, high conductivity, tunable components, and proportion. The formation mechanism of versatile carbon composites is attributed to the puffing-carbonization of maltose plus in situ carbothermal reaction between maltose and precursors. As a representative example, Li2 S is in situ implanted into a hierarchical porous cross-linked puffed carbon (CPC) matrix to verify its application in lithium-sulfur batteries. The designed S-doped CPC/Li2 S cathode shows superior electrochemical performance with higher rate capacity (621 mAh g-1 at 2 C), smaller polarization and enhanced long-term cycles as compared to other counterparts. The research provides a general way for the construction of multifunctional component-adjustable carbon composites for advanced energy storage and conversion.

Keywords: carbon; energy storage and conversion; lithium sulfide; lithium-sulfur batteries; puffing method.